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We perform extensive numerical simulations on a system of globally coupled rotors with repulsive interac-
tions. By controlling systematically initial conditions, we determine the criterion for the emergence of bicluster
motion. It is found that stable bicluster motion emerges at low temperatures, where the initial kinetic energy
accounts for less than about 60% of the total energy. Also observed are collective oscillations of the potential
energy and the magnetization, which are persistent. With appropriately chosen initial conditions, the system
exhibits characteristic motion where biclusters keep forming and disappearing continually. It is argued that
such bicluster motion is closely related to the dynamical order suggested recently.
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During the past decade the system of globally coupled
classical rotors with sinusoidal interactions, which simulates
physical systems with long-range interactions �1�, has been
the subject of extensive studies �2�. Here the interaction
range is infinite with the strength scaling with the system
size, making the system of mean-field character and thus
amenable analytical treatment. Specifically, in the canonical
ensemble, describing thermal equilibrium, the system with
attractive interactions undergoes an equilibrium phase transi-
tion at a finite critical temperature, below which rotors move
coherently as a single group �monocluster�. On the other
hand, there is no phase transition for repulsive interactions,
implying that rotors move incoherently at all temperatures.

These predictions are confirmed in direct dynamical simu-
lations �based on the microcanonical ensemble�, which fur-
ther disclose rich dynamical behaviors present in the system
�3–9�. For example, the attractive system displays extremely
slow relaxation toward thermodynamic equilibrium. This
slow relaxation, dubbed quasistationarity, does not coincide
with the predictions in the canonical ensemble, and thus the
suggestion has been made that there may exist inequivalence
between canonical and microcanonical ensembles. Such qua-
sistationarity is observed to survive well below the equilib-
rium critical temperature. It has also been reported that the
system exhibits many other interesting behaviors in the re-
gime of quasistationarity �5,8,10�.

For repulsive interactions, the system exhibits different
coherent motion persisting for a long time: The rotors move
in two groups, forming a bicluster, for some initial conditions
in dynamic simulations �11�. Such coherent motion with the
bicluster formation emerges at low temperatures or energies,
and goes away as the temperature is raised. This has led to
the surmise that the bicluster corresponds to an equilibrium
of some effective dynamics �12�. Recent work, however, has
argued that the bicluster formation results from other dy-
namic effect of the globally coupled system, i.e., dynamical
order allowed by rotating solutions of the associated Fokker-
Planck equation �FPE� �13�, raising controversy as to the
nature of this motion. In this work we perform extensive
dynamic simulations with systematically controlled initial

conditions and determine the criterion for the formation of
biclusters. Revealed is the important role of the initial poten-
tial energy in the bicluster formation. Specifically, for given
total energy, larger values of the potential energy facilitate
the formation of biclusters, manifesting the importance of
interactions between rotors. Furthermore, starting from a per-
fect bicluster state, the system exhibits characteristic motion
where biclusters keep forming and disappearing continually;
this bicluster motion, apparently different from the “stable”
bicluster motion, may be attributed to the dynamical order
allowed by rotating solutions of the FPE.

The dynamics of a system of N globally coupled rotors
with repulsive interactions is governed by the set of
equations of motion for the phase �i of the ith rotor
�i=1, . . . ,N�

I�̈i −
J

N
�

j

sin��i − � j� = 0 �1�

where I and J denote the �rotational� inertia of each rotor and
the coupling strength between rotors, respectively. Rescaling
time t in units of �I /J, we write Eq. �1� in the dimensionless
form

�̈i −
1

N
�

j

sin��i − � j� = 0. �2�

With the introduction of the canonical momentum pi=�i
˙ , Eq.

�2� obtains the form of a set of canonical equations with the
total energy

E = �
i

pi
2

2
+

1

N
�
i�j

cos��i − � j� � K + V , �3�

where the time evolution of the kinetic energy K and that of
the potential energy V are to be closely monitored in simu-
lations. Coherence in the system is measured by the general-
ized order parameter M� ��=1,2 , . . . � defined according to
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ei��i � M�ei��. �4�

For instance, the order parameter with �=1 measures the
monocluster �magnetization� and that with �=2 the bicluster,
respectively.

We begin with the initial conditions of phases ��i	 and
momenta �pi	 used in our simulations. As for ��i	, a uniform
distribution is taken and the potential energy V�t=0��V0 for
this configuration is calculated. Due to random assignment of
initial phases, the initial potential energy V0 may not be con-
trolled precisely. Instead, we divide the range of the total
energy into ten segments and set V0 in one of the ten seg-
ments. With the initial phases adopted to give the corre-
sponding energy, the system may be partially clustered ini-
tially, i.e., having small values of M1�t=0�. Starting from the
initial phases prepared in this way, we observe the relaxation
to the equilibrium state with a variety of momentum distri-
butions. Next, we assign the frequently used “waterbag” dis-
tribution for �pi	, to satisfy K�t=0��K0=E−V0 for given
total energy E and vanishing total momentum. This nonequi-
librium initial condition is controlled by means of the total
energy density U=E /N and the initial potential energy V0.
We employ the fourth-order symplectic scheme �14� to inte-
grate the equations of motion for N rotors. In general, sys-
tems with the size �i.e., the number of rotors� N larger than
100 are observed to give no appreciable difference as far as
the bicluster formation is concerned; we consider mostly the
system of N=800 rotors, and measure various quantities in-
cluding M1, M2, K, and V as functions of time t. With the
time step �t=0.01 taken in the integration, the typical errors
are controlled within the range O�10−9� to O�10−11�, depend-
ing on the kinetic energy. In particular, varying the energy
density U from 10−5 to 10−2 �in units of J�, we search for the
conditions that lead to the bicluster structure, described by
M2. For given total energy E, we adopt the ratio �=V0 /E of
the initial potential energy to the total energy as a control
parameter, to find the dependence on the initial potential en-
ergy. It is observed that the bicluster order parameter M2,
increases gradually from the initial value M2�t=0�
0 and
exhibits damped oscillatory motion. Its overall variations are
much slower than those of the magnetization M1, which also
exhibits oscillations �see Fig. 1�, and in addition there are
small fast oscillations along the overall slow oscillatory be-
havior. After the transient behavior, the amplitude of slow
oscillations reduces with increasing system size, similarly to
a thermodynamic quantity in the canonical ensemble. In con-
trast, fast oscillations are observed to persist in the stationary
state. These behaviors characterize the long-range �global�
coupling of the system, which gives rise to plasma oscilla-
tions. The stationary values of measured quantities are thus
obtained by taking time averages, typically through t=106,
with the data from the first 5�105 time steps discarded; this
appears to be sufficient for attaining stationarity.

At stationarity we define the temperature T as a measure
of the average kinetic energy according to T /2��p2� /2
=K /N, which may be different from the initial temperature
T0=2K0 /N. We find the �stationary� value of the bicluster

order parameter M2 to vanish at high temperatures
�T�5�10−3 in units of J with the Boltzmann constant
kB�1� for any initial configuration �15�, which is consistent
with Ref. �11�. However, as shown in Fig. 2�a�, when the
initial potential energy is less than about 60% of the total
energy, we do not observe bicluster structure even at the
lowest temperature considered. In terms of the parameter
T /U=2�1− �V� /E�, which measures the ratio of the kinetic
energy to the total energy, the data are conveniently replotted
in Fig. 2�b�. It is clearly demonstrated that distinctive biclus-
ters are formed only for small values of T /U, say, less than
1.3, implying that large momentum fluctuations tend to pro-
hibit the formation of biclusters.

Heretofore we have considered only the uniform �water-
bag� distribution of the initial momenta. Two momentum dis-
tributions other than the uniform distribution are also consid-
ered: One is the Maxwell distribution f�p�	exp�−p2 /2T0�
with the initial temperature T0�2�U−V0 /N�, and the other
is the sinusoidal distribution, where the initial momentum of
each rotor depends on its initial phase according to
pi=c sin �i. Here c is related to the kinetic energy via
K /N= �p2�, which reads c2=NT0��isin2 �i�−1. In the case of
uniform distribution of the initial phases, we thus have
c=�2T0 with the initial temperature T0. For the Maxwell
distribution, the overall results, shown in Fig. 3�a�, are quali-
tatively similar to those of the waterbag distribution. Biclus-
ters are formed when T /U
1.3, again manifesting the de-
pendence on the initial potential energy. In the case of the
sinusoidal distribution, on the other hand, one always ob-
serves biclusters regardless of the initial potential energy for
given energy density, if the temperature is low enough
�T
3�10−3� �see Fig. 3�b��. This may be understood as
follows. In the sinusoidal distribution of initial momenta,
rotors with phases in the range �0,�� have momenta oppo-
site to those in the range �� ,2�� initially. This gives a drift
to the rotors, assisting them to get together. As a result, the
system can develop far larger M1 than the initial value and
the average potential energy grows, which is not observed in
the case of other initial conditions. It is of interest that M2
changes nonmonotonically and exhibits a peak as T /U is
varied; the physical meaning of the peak needs more inves-
tigation.

FIG. 1. Typical time evolution of the order parameters M2 and
M1 of a system of N=200 rotors at U=2�10−4 with �=0.75. M2

exhibits oscillatory motion consisting of fast smaller oscillations.
M1 also exhibits oscillations, in general smaller and faster than
those of M2.
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Another interesting phenomenon to be noted here is the
rapid oscillations of the potential energy. As presented in Fig.
4, the potential energy V exhibits fast oscillations with very
small amplitude, which varies slowly in time as well. Here it
is tempting to consider the envelope of the fast oscillations,
i.e., a slow variation of the amplitude, to be the effective
potential experienced by the rotors; this stays parallel with
the suggestion on the effective dynamics obtained by inte-
grating out fast variables �12�, in which the effective poten-
tial Veff is expressed in terms of M2. It is thus of interest to
test the prediction of the effective dynamics theory as to the
potential energy oscillations observed in our simulations. To
this end, we compare the envelope of the potential energy
oscillations with the effective potential, which depends on
M2 according to Veff�1−M2�1/2. In Fig. 4 we display typi-
cal effective potential fits for two different values of the ini-
tial potential energy V �but with the same energy density U�.
When the initial potential energy is large �see Fig. 4�a� where

T /U=1.28�, the envelope agrees very well with the effective
potential form. Such excellent agreement persists at the long
time as well. We point out that the initial conditions adopted
in Ref. �11� indeed belong to this regime �i.e., T /U
1.3�.
However, for general initial conditions with small relative
variations of the potential energy, the potential energy
oscillations gradually deviate from the above effective dy-
namics as T /U is raised beyond 1.3 �see Fig. 4�b� where
T /U=1.58�. In this regime biclusters fade away. This indi-
cates that the effective dynamics theory provides only a par-
tial answer to the bicluster motion, not explaining the mecha-
nism of its formation.

We now discuss the rapid oscillation of the potential en-
ergy V and its role in the bicluster formation. Since V	M1

2,
the time series of M1 also exhibits a complex oscillatory
behavior, the amplitude of which lies between M1�t=0� and
zero. This type of oscillation, persisting for a very long time,
has also been reported in a system of globally coupled rotors
with attractive interactions and suggested to be the inherent
behavior of the globally coupled system �10�. Naturally, both
the kinetic energy and the potential energy also oscillate with
amplitudes depending on the initial conditions. We presume
that such collective oscillations are indicative of metastabil-
ity. In Ref. �10� it has been suggested that the collective
motion, interpreted as the self-organization of self-excited
rotors in a globally coupled system, is a characteristic of the

FIG. 2. �a� Bicluster order parameter M2 versus temperature T
�in units of J�. Data have been taken from the average over time in
the stationary state. Different symbols correspond to different val-
ues of the ratio of the initial potential energy to the total energy,
��V0 /E. �b� The same data are plotted versus the rescaled tem-
perature �in units of the energy density U�. Manifested is the local-
ized structure, characterized by the bicluster formation, at low tem-
peratures and/or large initial potential energies �T /U
1.3�.

FIG. 3. Bicluster order parameter M2 versus the temperature T
for �a� the Maxwell distribution and �b� the sinusoidal distribution
of initial momenta. Symbols represent the same as those in Fig. 2.
Whereas results shown in �a� are qualitatively the same as those
from the waterbag distribution, �b� demonstrates the formation of
biclusters at low temperatures regardless of the initial potential en-
ergy. Insets display the same data for M2 plotted versus T /U.
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mean-field system. It is thus of interest to examine the physi-
cal origin of these excited modes and the mechanism of their
sustenance.

Note first that this oscillatory behavior emerges regardless
of the energy density. To examine it, we compute the power
spectrum of M2 for various values of T /U and display some
typical results in Fig. 5, where the main peaks together with
higher harmonics are observed. In particular, as the tempera-
ture is lowered, the main peak in the power spectrum P is
shown to develop, manifesting that biclusters formed with
increasing amplitude. At sufficiently low temperatures where
biclusters are formed �i.e., T /U
1.3�, the amplitude of os-
cillations is found not to vary as a whole. It is also observed
that the major peak splits into two peaks. This may be un-
derstood as follows. As described before, the initial potential
energy V0, a function of the initial phases ��i

0	, affects the
formation of the bicluster. We therefore consider small per-
turbations around the initial phases and write

�i = �i
0 + �i. �5�

Substitution of this into Eq. �2� and linearization lead to

�̈i +
1

N
�
j=1

N

� jcos��i
0 − � j

0� = 0, �6�

the solution of which may be obtained from diagonalizing
the matrix

Vij =
1

N
cos��i

0 − � j
0� . �7�

The nonzero eigenvalues or the normal mode frequencies are
given by �12�

±
2 =

1 ± �M2�
2

, �8�

which reveals that the single normal mode �2�f =1/�2
present for M2=0 indeed splits into two modes ±=2�f± as
the bicluster develops �see Fig. 5�c��. Therefore relatively
large values of the initial potential energy V0 initiate the
formation of the bicluster, which in turn contributes the nor-
mal modes in M2 and induces splitting. For a simple uniform
distribution, it is straightforward to show, via direct calcula-
tion of the eigenvalues of Vij =N−1cos�2�N−1�i− j��, that
there is only one normal mode =1/�2. This implies that
from the uniform distribution it is hard to develop the biclus-
ter perturbatively, which is also consistent with the observa-
tion that the bicluster is easily formed for large potential
energies.

In addition, initial conditions with nonzero M2 may facili-
tate the bicluster formation. To illustrate this, we set the
system perfectly biclustered initially, i.e., �i�0�=0 for
i=1, . . . ,N /2 and �i�0�=� for i=N /2+1, . . . ,N and measure
the bicluster order parameter M2, the evolution of which is
plotted in Fig. 6. It is observed that M2 varies continuously

FIG. 4. Potential energy oscillations in comparison with the ef-
fective potential energy for two different initial potential energy
ratios �= �a� 0.87 and �b� 0.42 with U=2.0�10−4. Dashed curves
correspond to the effective potential energy C�1−M2 with C= �a�
1.73�10−4 and �b� 8.7�10−5. The case �a�, corresponding to
T /U=1.28, shows good agreement with the effective dynamics;
such agreement is not observed in �b� where T /U=1.58.

FIG. 5. Power spectrum of M2, denoted by P, versus the fre-
quency f for various values of T /U. The two normal modes f± are
indicated in �c�.
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from 0 to 1. In Fig. 6�a�, each rotor in a cluster has its
counterpart in another which has the same momentum, and
biclusters are observed to form and disappear continuously.
Here the net force exerted on a particular rotor always van-
ishes since the force produced by a rotor within the same
cluster is canceled by that in the other cluster. Each rotor
thus keeps its own initial momentum and its phase grows
linearly in time, yielding the oscillatory behavior of M2. In
Fig. 6�b�, on the other hand, four values of the initial mo-
mentum just make the total momentum vanish and four clus-
ters interact with each other, still leading to �more complex�
oscillations of M2 between 0 and 1. We remark that the os-
cillations in Figs. 6�a� and 6�b� persist indefinitely and only
parts of them are displayed. Here rotors in each cluster move
as a single particle, which makes the system equivalent to a
system of four rotors displaying large fluctuations of M2 �be-
tween 0 and 1�. The range of M2 in general reduces with the
number of clusters.

Apparently these bicluster motions are different from
those in Ref. �11�. In the latter each rotor exhibits a small
oscillatory motion around the long-time trajectory which
should vanish if “fast variables” are integrated out as claimed
in Ref. �12�. It is, however, obvious that there are no fast
variables to be integrated out in Fig. 6�a�. Meanwhile fast
oscillations are observed in Fig. 6�b�, but the behavior of M2
varies greatly, depending sensitively on the initial conditions.
Further, these results do not depend on specific values of
initial velocities, which implies that bicluster motion of this
type is independent of the temperature.

Such bicluster motions observed in dynamic simulations
are closely related with dynamical order present in the sys-
tem, which may be demonstrated as follows. Using Eq. �4�
with �=1 in Eq. �2�, we get the single-particle equation from
which one may derive the corresponding FPE for the single-
rotor probability distribution P�� , p , t� �13�. In the absence
of thermodynamic order �i.e., M1=0�, the FPE reads

�P

�t
= − p

�P

��
. �9�

It has been shown that P�� , p , t� admits a rotating solution of
the form �13�

P��,p,t� = �
k�±1

exp�ik�� − pt��Fk�p� , �10�

which allows dynamical order with any degree of clustering
other than the monocluster �M1=0�. For instance, as for the
biclustering, it has been shown, with the choice F2k�p�
=F�p� and F2k+1�p�=0, that �13�

P��,p,t� = �F�p����� − pt� + ��� − pt + ��� . �11�

It is then straightforward to show, for this distribution with
F�p�= �1/2����p−v�+��p+v��, that M2 oscillates with fre-
quency 2v, which is observed in Fig. 6�a�. It has further been
shown that the rotating solution is neutrally stable at all tem-
peratures for repulsive interactions, supporting the observa-
tion that the oscillatory behavior does not depend on the
initial velocity v. For the perfect bicluster state �M2=1�, it is
obvious that we have a single mode of =1 and this mode
persists as described before.

When there is velocity �momentum� dispersion such as v1
and v2 in Fig. 6�b�, similar arguments lead to M2 oscillations
consisting of two frequencies 2v1 and 2v2, although the de-
tailed behavior may vary, depending on the specific values of
v1 and v2. For example, a slow frequency may also develop
if the velocity difference is small. As more dispersion is in-
troduced in the velocity distribution, it would be easier to
develop slow collective oscillations in the midst of fast os-
cillations unless the width of the distribution is too wide.

This suggest that collective oscillations and bicluster mo-
tions are closely related. This is to be contrasted with the
system with attractive interactions, which has self-excited
modes via the Hopf bifurcation in the high-energy region
�10�.

To summarize, we have investigated the formation of a
biclustered structure in a system of globally coupled rotors
with repulsive interactions, using various initial conditions. It
is revealed that the ratio of the initial potential energy to the
total energy plays a crucial role in the spontaneous formation
of biclusters. In particular, biclusters are formed only when
the initial potential energy exceeds 60% of the total energy
or T /U
1.3. Also observed are collective oscillations in the
system and a major peak shift to lower frequencies as
biclusters are formed, indicating the role of collective oscil-
lations in the formation of biclusters. Further, it has been

FIG. 6. Bicluster order parameter M2 versus time t for two
different initial momentum distributions: �a� �̇i�0�= �̇N−i�0�=v for
i=1, . . . ,N /4 and −v for i=N /4+1, . . . ,N /2; �b� �̇i�0�=−�̇N−i�0�
=v1 for i=1, . . . ,N /4 and v2 for i=N /4+1, . . . ,N /2.
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demonstrated that interesting bicluster motion can arise from
dynamic effects, in which M2 continuously varies between 0
and 1. This suggests that the bicluster formation is closely
related to dynamical order �13�. With appropriate velocity
�momentum� dispersion, this bicluster motion in turn devel-
ops slow collective oscillations and may become stabilized.

The stabilized bicluster motion then could be well described
by the effective dynamics �12�.
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